Conformational Dynamics and Binding Free Energies of Inhibitors of BACE-1: From the Perspective of Protonation Equilibria
نویسندگان
چکیده
BACE-1 is the β-secretase responsible for the initial amyloidogenesis in Alzheimer's disease, catalyzing hydrolytic cleavage of substrate in a pH-sensitive manner. The catalytic mechanism of BACE-1 requires water-mediated proton transfer from aspartyl dyad to the substrate, as well as structural flexibility in the flap region. Thus, the coupling of protonation and conformational equilibria is essential to a full in silico characterization of BACE-1. In this work, we perform constant pH replica exchange molecular dynamics simulations on both apo BACE-1 and five BACE-1-inhibitor complexes to examine the effect of pH on dynamics and inhibitor binding properties of BACE-1. In our simulations, we find that solution pH controls the conformational flexibility of apo BACE-1, whereas bound inhibitors largely limit the motions of the holo enzyme at all levels of pH. The microscopic pKa values of titratable residues in BACE-1 including its aspartyl dyad are computed and compared between apo and inhibitor-bound states. Changes in protonation between the apo and holo forms suggest a thermodynamic linkage between binding of inhibitors and protons localized at the dyad. Utilizing our recently developed computational protocol applying the binding polynomial formalism to the constant pH molecular dynamics (CpHMD) framework, we are able to obtain the pH-dependent binding free energy profiles for various BACE-1-inhibitor complexes. Our results highlight the importance of correctly addressing the binding-induced protonation changes in protein-ligand systems where binding accompanies a net proton transfer. This work comprises the first application of our CpHMD-based free energy computational method to protein-ligand complexes and illustrates the value of CpHMD as an all-purpose tool for obtaining pH-dependent dynamics and binding free energies of biological systems.
منابع مشابه
Molecular Dynamics and Docking Investigations of Several Zoanthamine-Type Marine Alkaloids as Matrix Metaloproteinase-1 Inhibitors
Zoanthamine-type alkaloids display a wide spectrum of biological effects. This study aimed to examine the inhibitory effects of norzoanthamine and its ten homologues of zoanthamine class on human fibroblast collagenase by modeling a three-dimensional structure of the ligands at collagenase using energy minimization, docking, molecular dynamics simulation and MM-PB/GBSA binding free energy calcu...
متن کاملMolecular Dynamics and Docking Investigations of Several Zoanthamine-Type Marine Alkaloids as Matrix Metaloproteinase-1 Inhibitors
Zoanthamine-type alkaloids display a wide spectrum of biological effects. This study aimed to examine the inhibitory effects of norzoanthamine and its ten homologues of zoanthamine class on human fibroblast collagenase by modeling a three-dimensional structure of the ligands at collagenase using energy minimization, docking, molecular dynamics simulation and MM-PB/GBSA binding free energy calcu...
متن کاملFragment-based Binding Efficiency Indices in Bioactive Molecular Design: A Computational Approach to BACE-1 Inhibitors
One of the most important targets in Alzheimer disease is Beta site amyloid precursor protein cleaving enzyme-1 (BACE-1). It is a membrane associated protein and is one of the main enzymes responsible for amyloid β (Aβ) production. Up to now, a considerable number of peptidic and non-peptidic inhibitors of BACE-1 have been developed. Recently, small molecule BACE-1 inhibitors have attracted the...
متن کاملFragment-based Binding Efficiency Indices in Bioactive Molecular Design: A Computational Approach to BACE-1 Inhibitors
One of the most important targets in Alzheimer disease is Beta site amyloid precursor protein cleaving enzyme-1 (BACE-1). It is a membrane associated protein and is one of the main enzymes responsible for amyloid β (Aβ) production. Up to now, a considerable number of peptidic and non-peptidic inhibitors of BACE-1 have been developed. Recently, small molecule BACE-1 inhibitors have attracted the...
متن کاملStructural Investigation, Proton and Electron Affinities, Gas Phase Basicities, and Ionization Energies of Captopril
Captopril is one of the most significant angiotensin-converting enzyme inhibitors. In spite of numerous experimental and computational studies on its properties, not enough geometrical and thermodynamic data is available on this compound. So, this study aimed to investigate the structural properties and assignment of possible conformers of captopril in the gas-phase. To this end, 1152 unique tr...
متن کامل